S0960-894X(96)00043-1

NOVEL 6-SUBSTITUTED 2-AMINOTETRALINS WITH POTENT AND SELECTIVE AFFINITY FOR THE DOPAMINE D₃ RECEPTOR

P.J. Murray,^{+,1,*} R.M. Helden,⁺ M.R. Johnson,⁺ G.M.Robertson,⁺ D.I.C.Scopes,⁺ M. Stokes,⁺ S. Wadman,⁺ J.W.F. Whitehead,⁺ A.G. Hayes,^{\$} G.J. Kilpatrick,^{\$} C. Large,^{\$} C.M. Stubbs,^{\$} and M.P.Turpin^{\$}

Departments of Medicinal Chemistry⁺ and Pharmacology^{\$},
Glaxo Wellcome Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, England.

Abstract: Starting from (1S,2R)-5-methoxy-1-methyl-2-*N*,*N*-dipropylaminotetralin [(+)-UH-232] as a lead structure, a series of novel 6-substituted 2-aminotetralins have been discovered which show high affinity for dopamine D₃ receptors. One compound, GR218231, exhibits *ca.* 400 fold selectivity for the dopamine D₃ receptor over the D₂ receptor and *ca.* 10,000 fold selectivity with respect to D₁ and D₄ receptors.

The discovery of the dopamine D₃ receptor has provoked much interest since it shows high affinity for many antipsychotics.^{2,3} Of particular interest is that *in situ* hybridisation studies indicate its selective localisation in limbic areas of the brain^{4,5} with the significance that a selective antagonist for the dopamine D₃ receptor might provide an effective antipsychotic free from the extrapyramidal side-effects which haunt the typical D₂ antagonists.^{5,6} In their initial paper on the cloning of the D₃ receptor, Sokoloff et al.³ identified one D₂ antagonist, (1S,2R)-5-methoxy-1-methyl-2-*N*,*N*-dipropylaminotetralin [(+)-UH-232]⁴, which actually showed greater affinity for the D₃ receptor. Although (+)-UH-232 shows only modest selectivity and potency for the D₃ receptor, its lack of affinity for non-dopaminergic receptors made it an attractive starting point for a chemical programme aimed at seeking potent and selective antagonists for the D₃ receptor.

Since substitution at the 6-position of the 5-methoxy-2-aminotetralin nucleus was readily achieved *via* directed metallation, this was one of the sites selected for modification. In particular, it allowed access to a range of phenethyl alcohols and related derivatives. The 4-chlorophenyl alcohol 1 (as an epimeric mixture) was an early compound that showed a distinct improvement in selectivity and was of sufficient interest to pursue further, although its affinity for the D₃ receptor was still modest.

Since the three stereocentres present in 1 hindered a rapid exploitation of this new lead, a strategy of seeking structurally simplified analogues was adopted and key results are summarised in Tables 1 Removal of the C-1 methyl group from 1 gave 2 of which one of the diastereomeric alcohols (stereochemistry not known) showed higher D3 affinity compared with 1 and displayed ~50 fold selectivity with respect to the D2 receptor (Table 1). Compound 2 also maintained good selectivity over those receptors which have traditionally displayed significant affinity for 2-aminotetralin systems [e.g. α_1 (pKi = 6.0) and 5-HT_{1A} (pKi = 6.3) receptors]. Still further simplification through removal of the benzylic hydroxyl group, giving the (2R)-5-methoxy-6-arylethyl-2-aminotetralins 6-9, resulted in some loss of selectivity but retention of D₃ affinity (e.g. 6).

Table 1 Receptor affinities and selectivity of 6-arylethyl-5-methoxy-2-aminotetralins

Compd	X	Y	Z	Receptor Affinity (pKi)	
				D3p	D ₂ c
2 (isomer i)	Cl	Н	ОН	8.2	6.5
2 (isomer ii)	Cl	Н	ОН	7.3	5.9
3d	н	Н	ОН	7.2	6.0
4d	CI	CI	ОН	7.7	NT
5 ^d	MeO	Н	ОН	7.3	NT
6	CI	Н	Н	8.3	6.9
7	CF ₃	Н	Н	8.2	7.0
8	Н	Н	Н	7.7	NT
9	MeSO ₂ NH	Н	н	6.3	NT

^a Figures quoted are the mean of two independent determinations, each within 0.2 log units of the mean.

The most dramatic improvements in profile were observed with the simple 6-arylethyl-2aminotetralins 10-21 (Table 2). Initially, D3 receptor affinity was rapidly assessed in the racemic series for a range of compounds bearing different aryl ring substituents. This provided a number of analogues which showed D3 affinities >8.5 and selectivities of >100 fold with respect to the D2 receptor. For selected structures these affinities and selectivities were subsequently confirmed for the (R)-configuration enantiomers (e.g. 10,12 & 13). Polar substitutions on the aryl ring, such as carboxylic acid 20, carboxamide 21 and sulphone 22, were poorly tolerated.

b Binding affinity, Chinese hamster ovary cells transfected with human D₃ receptor using [³H]-spiperone. c Binding affinity, mouse Ltk⁻ cells transfected with human D₂ receptor (short form) using [³H]-spiperone.

d Mixture of diastereomeric alcohols

Table 2^a Dopamine binding affinities and selectivities of 6-arylethyl-2-aminotetralins

Compd	C-2 Stereochem.	X	Receptor Af D3	finity (pKi) D ₂
10	R	CI	8.4	6.4
11	S	CI	8.0	6.9
12	R	MeC(=O)-	8.5	6.1
13	R	MeC(N=OH)-	9.0	6.5
14	RS	MeC(=O)-	8.4	6.0
15	RS	MeC(N=OH)-	8.7	6.1
16	RS	Н	8.4	6.4
17	RS	MeO	8.5	6.6
18	RS	НО	7.9	6.5
19	RS	EtO ₂ C	8.7	6.6
20	RS	HO ₂ C	5.5	NT
21	RS	H ₂ NOC	6.2	NT
22	RS	MeSO ₂	5.8	NT

a Footnotes as for Table 1

A significant drawback of structures such as those summarised in Table 2 is their high lipophilicity and consequent rapid clearance in vivo. This led us to extend our programme of modifications to discover compounds of lower lipophilicity which still retained a high D3 potency and selectivity profile. One approach to this objective was to introduce polar substitutions into the 6-arylethyl side-chain (Table 3). While incorporation of carbamate, amide, urea and sulphone functions (e.g. 23-26) all markedly reduced lipophilicity, this strategy was also consistent with the retention of high D₃ potency and selectivity. Of particular note is the sulphone 26 which possesses a high D3 affinity and shows The active enantiomer, 27 (GR218231), is ~400 fold selective for the D₃ enhanced selectivity. receptor and ~10,000 fold selective with respect to D1 and D4 receptors. It also only binds weakly to α_1 , α_2 and 5-HT_{1A} receptors (pKi values < 6.0). GR218231 was tested for D₂ functional activity at presynaptic D2 receptors in rat striatal slices using fast cyclic voltammetry: in this preparation7 quinpirole inhibits the electrically-evoked release of dopamine and this is blocked by D2 antagonists. Compound 27 shows no detectable agonist activity up to 1µM concentration in this test and its low D₂ antagonist potency (pKi = 5.8) correlates well with its D₂ binding affinity. The exceptionally high affinity and selectivity of the iodo derivative 29 suggests its potential utility, as a radioligand, for determining central D₃ receptor distribution and function.

Table 3^a 6-Phenethyl-2-aminotetralins incorporating polar substitutions

Compd	C-2 Stereochem	х	Y	mlogD	Receptor Affinity (pKi)	
					D3	D ₂
17	RS	MeO	CH ₂	>4.0	8.5	6.6
23	RS	MeO	NCO ₂ Me	2.9	8.2	6.1
24	RS	MeO	NCOMe	2.6	8.1	6.2
25	RS	MeO	NCONH ₂	1.9	7.6	5.2
26	RS	MeO	SO ₂	2.2	8.8	6.2
27	R	MeO	SO ₂	2.2	8.9	6.3
28	RS	MeO	S	4.3	8.9	6.7
29	R	1	SO ₂	3.4	9.8	6.7

a Footnotes as for Table 1

Chemical synthesis: The 6-phenethyl analogues **2-5** were synthesized *via* a directed metallation of enantiomerically pure 5-methoxy-2-aminotetralins **30** (R = H, Me) followed by quenching with DMF and subsequent reaction with the appropriate benzyl Grignard reagent (Scheme 1).

Scheme 1

(i) a) n-BuLi, TMEDA, Et₂O, 0°C b) DMF, -78°C (R = H, 71%; R = Me, 61%) (ii) ArCH₂MgCl, THF or Et₂O (X = Cl, Y = H, R = Me, 38%; X = Cl, Y = R = H, 24%; X = Y = Cl, R = H, 34%; X = Y = R = H, 39%)

The 6-carboxaldehyde **31** also served as the key intermediate for the synthesis of the 6-arylethyl-5-methoxy-2-aminotetralin analogues **6-9**. Thus, reaction of **31** with the appropriate Wittig reagent followed by hydrogenation and further elaboration, as necessary, afforded the desired compounds (Scheme 2). In the case of the unsubstituted analogue (X = H), hydrogenation/hydrogenolysis of the corresponding 4-chorophenyl intermediate afforded **8** directly.

Scheme 2

(i) ArCH=PPh₃, THF (X = Cl, 34%; X = NO₂, 92%; X = CF₃, 50%) (ii) H₂/Pd-C, EtOH (X = CF₃, 44%; X = H, 89%) (iii) H₂/Pt-C, EtOH (X = Cl, 81%) (iv) a) H₂/Pd-C, EtOH b) MeSO₂Cl, Et₃N, CH₂Cl₂ (X = MeSO₂NH; 42%)

6-Bromo-2-(*N*,*N*-dipropylamino)tetralin provides a straightforward entry to the synthesis of the racemic 6-arylethyl-2-aminotetralins **14-22** and 6-arylaminomethyl-2-aminotetralin derivatives **23-25** (Scheme 3). Where appropriate, Heck reactions using styrenes (route A) or Stille coupling using vinylstannanes (route B) followed by Heck reactions on the 6-vinyl intermediate gave the stilbenes **32**. Reduction of the olefinic bond and, for certain examples, minor functional group modifications gave the desired products. The (2R) enantiomers **10**, **12** and **13** were obtained in high optical purity *via* the same methodology but employing the resolved bromotetralin **34** (see also Scheme 4).

Scheme 3

(i) ArCH=CH $_2$, Pd(OAc) $_2$, P(o-tolyl) $_3$, Et $_3$ N, DMF; 60-80% (ii) Bu $_3$ SnCH=CH $_2$, Pd(PPh $_3$) $_4$, toluene, Δ ; 80% (iii) As for (i) but + ArBr 51% (iv) H $_2$ /Pd-C, EtOH 61% (v) functional group modifications (vi) a) n-BuLi, THF, -78°C b) DMF, -78°C; 96% (vii) 4-MeOC $_6$ H $_4$ NH $_2$, NaBH(OAc) $_3$, AcOH, CH $_2$ Cl $_2$; 57% (viii) a) CICO $_2$ Me, Et $_3$ N; 54% or b) MeCOCI, pyridine; 62% or c) KOCN, AcOH, then NH $_3$, EtOH; 87% (ix) HCO $_2$ NH $_4$, Pd-C, MeOH; 80-90% (x) EtCHO, NaBH(OAc) $_3$, AcOH, CH $_2$ Cl $_2$; 55%

The synthesis of the sulphone GR218231 is outlined in Scheme 4. A key aspect of this route is the expeditious preparation of the 6-bromo-2-aminotetralin 35 in high optical purity (de 99.2%). Subsequent metallation, formylation and reduction gave the benzyl alcohol 36, appropriately functionalised at the C-6 position for elaboration to GR218231. Similar chemistry but using 4-iodobenzyl mercaptan led to the corresponding iodo derivative 29.8

Scheme 4

(i) (S)-PhCH(Me)NH₂, NaBH(OAc)₃, AcOH, CH₂Cl₂. 85% (ii) a) HCl, Et₂O b) recryst.; 33%, 99% de (iii) EtCHO, NaBH(OAc)₃, AcOH, CH₂Cl₂; 100% (iv) a) n-BuLi, THF, -78° b) DMF; 81% (v) NaBH₄, 81% (vi) SOCl₂, CH₂Cl₂, DMF, 0° (vii) p-MeOC₆H₄SH, Na₂CO₃, CH₂Cl₂; 77% for two steps (viii) Oxone, i-PrOH, H₂O, 0°; 93% (ix) HCO₂NH₄, Pd/C, MeOH, 67%

In summary, through successive modification of a novel series of 2-aminotetralins we have obtained compounds which have high affinity for the dopamine D_3 receptor and high selectivity over dopamine D_1 , D_2 and D_4 receptors.

References

- Author to whom correspondence should be addressed. Present address: GlaxoWellcome Cambridge Chemistry Laboratory, University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.
- For recent reviews on novel dopamine receptor subtypes see: Civelli, O.; Bunzow, J.R.; Grandy, D.K.; Zhou, Q-Y.; Van Tol, H.H.M. Eur.J.Pharmacol. 1991, 207, 277. Sibley, D.R.; Monsma, F.J. TIPS 1992, 13, 61.
- 3. Sokoloff, P.; Giros, B.; Martres, M-P.; Bouthenet, M-L.; Schwartz, J-C. Nature 1990, 347, 146.
- 4. Sokoloff, P.; Andrieux, M.; Besancon, R.; Pilon, C.; Martres, M-P.; Giros, B.; Schwartz, J-C. Eur.J.Pharmacol. 1992, 225, 331.
- Jenner, P.; Marsden, C.D. Drugs in Central Nervous System Disorders; Horwell, D.C., Ed.; Marcel Dekker: New York 1985; pp.149-262.
- 6. Sokoloff, P.; Martres, M-P.; Giros, B.; Bouthenet, M-L.; Schwartz, J-C. *Biochem.Pharmacol.* **1992**, *43*, 659. Schwartz, J-C.; Levesque, D.; Martres, M-P.; Sokoloff, P. *Clin.Neuropharmacol.* **1993**, *16*, 295.
- 7. Bull, D.R.; Patij, P.; Sheehan, M.J.; Stamford, J.A.; Kruk, Z.L.; Humphrey, P.P.A. J. Neurosci. Methods 1990, 32, 37.
- 8. All new compounds exhibited satisfactory spectral and elemental analysis data.